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Recently, group study has become a common educational strategy employed by educators throughout the 
country. In this paper, we attempt to construct theoretical models to support and help us understand the re-
puted efficiency of the group learning over traditional instruction. Specifically, we concentrate on one as-
pect of the group dynamics: the dynamics of the group emergent semantic agreement.      
 
 

I. INTRODUCTION 

An extensive literature in psychology and education re-
search analyzes and documents the productivity differences 
between individual, competitive, and cooperative approach-
es to classroom instruction and learning (Lazarowitz & 
Karsenty, 1990; Webb & Farivar, 1994). It is generally ac-
cepted that cooperative learning produces greater student 
achievement than the traditional learning methodologies. 
According to one of the authors (Slavin, 1995) more than 
63% of the cooperative learning groups included in a meta-
study have shown an increased productivity as compared 
with individual learners. In this paper, we construct a formal 
model of the group dynamics that one may employ to study 
the mechanisms of the group interaction. 
 

An optimization process of a goal function governs the 
dynamics of the group: every member of the group apprises 
the progress made by the group based on an internal goal 
function. However, the members of the group come to rely 
on one another in order to satisfy their goals. Consequently, 
acting within the group places constraints on the process due 
to communication requirements: successful communication 
assumes and compels a semantic agreement. Therefore, the 
interpersonal interaction has to negotiate between individual 
goal optimization and semantic agreement. One might ex-
pect that ontological agreement emerges from this tension.  

 
To investigate the emergent semantic agreement within 

a group, we designed a system with a variable number of 
students modeled as finite state machines (Kam, 1997). All 
the students have access to a common area, a posting board, 
which they can either read or change their states. This acts 
as the communication medium that the group members may 
manipulate (Noble & Cliff, 1996). The finite state machine 
contains one slot of internal memory state that stores the 
previous state of the posting board, and one slot that stores 
one question, which represents the question the student may 
ask the rest of the group at a time through the posting board. 
In this way, any action the student might take when its turn 
comes is determined by the present state of the posting 
board and the known question. No student may share the 
content of the internal question slot directly with any other 

student: they can communicate only through the posting 
board, using the limited set of symbols that makes up their 
vocabulary. However, the way in which each group member 
uses this vocabulary is dependent on the semantic conven-
tions specified by its own behavioral matrix. This situation 
reproduces the real case in which a student doesn’t know 
what another student is thinking; he just receives an encoded 
message in a sound sequence.  

 
This paper is not concerned with the learning per se, or 

to put it differently, it regards learning from a different per-
spective. The finite state machines are quite rudimentary 
and lack the nuances that human cognition entails. Our 
choice was motivated by the assumption that learning could 
be modeled as a language acquisition process (from some 
point of view, learning physics or any science could be even 
more problematic, because there are no decent dictionaries: 
one learns through an elaborated process of corroborating 
behavior and discourse; see for example (Kuhn, 1996)) and 
in as far as the acquisition process is concerned, even a ru-
dimentary one would work. The emphasis of this simulation 
falls on communication and how it emerges along with se-
mantic agreement—and learning itself — during the group 
performance of an educational task. 

 
The language employed during this simulation was 

built around a limited vocabulary of symbols that group 
members could place on the common posting area. General-
ly speaking, real languages involve more complicated phe-
nomena than what may be reproduced using such a limited 
vocabulary. However, technical jargon involves a limited 
number of terms. Moreover, a group of students working 
within a learning task usually experiments and explores the 
given problem, struggling to describe it using a finite set of 
words. 

 
During their explorations, utterances may be tentative, 

searching, and often fragmented because students are uncer-
tain of the technical language usage, although they may 
have expectations (regarding the actions generated by their 
words since most of the time ordinary vocabulary does over-
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lap with the technical vocabulary) based on responses to 
previous discourses, and memories of previous experiences. 
This remembrance of past experiences is part of each learn-
er’s personal knowledge. Exploratory talk is an acceptable, 
even necessary, way for speakers to bring in their tacit 
knowledge, or “personal knowledge” (Polanyi, 1958), such 
that through socialization they construct new meanings. 
 
 
II. FINITE STATE MACHINES 
 

Finite State Machines (FSM) are models of behavior for 
a system or a complex object. The essential features exhibit-
ed by these behavioral models are that they can model sys-
tems encompassing a limited number of conditions or 
modes, and that they are built with a specified way of learn-
ing or changing their behavior in response to changes envi-
ronmental circumstances. Finite state machines are typically 
used as a type of control system in which knowledge is rep-
resented by states, and actions are constrained by rules. 
They are extremely simplified rule-based behavioral sys-
tems, which is exactly their strength. One may employ them 
to code behavior in a way that is not excessively demanding 
of resources.  

 
There are four main elements that go into the design 

and building of a finite state machine: 
 
1. A finite state machine encodes behavioral states that may 
generate actions, provided that a certain set of conditions are 
met. 
 
2. There is a clearly specified way for the finite state ma-
chine to change its internal state, switching from one to an-
other. 
 
3. A finite state machine contains rules or conditions that 
must be met to allow a state transition. 
 
4. A finite state machine accepts input events that are either 
externally or internally generated, which may possibly trig-
ger rules and lead to state transitions. 
 

 
 

Figure 1. A finite state machine flow chart 
 

One may visualize a finite state machine as a matrix 
having the dimension of the input space, keeping in mind 

that the input space contains all possible events generated 
from outside or inside the finite state machine. The simula-
tion must start from an initial state. During the simulation 
this state will subsequently be modified by the interaction 
with the input events, but the finite state machine must be 
able to remember the product of the last state transition. In 
particular, received input events act as triggers that cause an 
evaluation of the rules that govern the transitions from the 
current state to other states. In Figure 1, we represent the 
flow chart of a finite state machine run with three internal 
states. 

 
 

III. SEMANTIC AGREEMENT AND GROUP SIZE 
 

We return now to our simulation. Before the simulation 
starts, we initiate the FSM behavioral matrices by use of 
random values in order that the group members begin with 
different semantic rules: none of them knows the semantic 
rules used by its neighbors when posting on the common 
board. Then, we allocate random questions from the training 
environment to the students to store in their internal states. 
The training environment of this simulation is made up from 
a set of symbols, each symbol corresponding to one ques-
tion a student may ask or be asked with respect to a given 
task or problem. 
 

 
 

Figure 2. Finite state machines around a common posting 
board 

 
 
The simulation starts by sweeping the entire group a 

sufficient number of times (this number depends on the size 
of the vocabulary used and was chosen such that the denota-
tional matrix — see below — has enough time to reach a 
stable region), prompting each FSM to either post its inter-
nal question as a question (symbol) for everyone else to see, 
or try to answer to the posted question (symbol). If the stu-
dent who posted the question finds the answer incorrect, the 
student who answered updates the behavioral matrix rule 
employed accordingly in order to increase the chance of 
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answering appropriately next time. Thus, the student who 
attempted to answer is able to learn. If the answer is, how-
ever, found appropriate, the student who answered receives 
a reward. In this way the simulation keeps track of the stu-
dents’ performance.  

 
After these sweeps of the group, the students receive 

fresh questions from the training environment and the pro-
cess is repeated. When the group members have renewed 
their internal questions another number of times, the simula-
tion decides which group member has the least amount of 
rewards, in other words, the student who consistently did 
not agree with the rest of the group. This student will simply 
discard its behavioral matrix and make up a new one com-
posed from the two members of the group who performed 
consistently the best: 
 

cij = θ(in + j − r1 )θ(r2 − in − j )bij + 

[θ(r1 − in − j ) + θ(in + j − r2)]aij , 
 

where aij and bij are elements of the behavioral matrices cor-
responding to the best and next best group members (for 
simplicity, we have given a formula for square matrices of 
size n; the actual simulation used a generalization of this 
formula to three-dimensional matrices), θ is the step func-
tion, and r1 and r2 are two random integer numbers r1 < r2. 
The reconstruction formula makes sure that the reconstruct-
ed behavioral matrix preserves the symbol-action relations 
(semantic rules) that the parent behavioral matrices are us-
ing. Also, the reconstruction formula is general enough to 
assure a combination between the semantic rules of the par-
ent matrices without becoming implausible: the reconstruct-
ed matrix inherits one compact subset of semantic rules 
from one parent and one compact subset from the other. 
 

On top of this combination between the best two behav-
ioral matrices, there is a certain probability that some ele-
ments of the matrix are compromised during copying. In 
this way, the simulation makes the assumption that in real 
life, when one of the group members reconstructs the se-
mantic rules or the understanding of a problem domain, as 
long as the group is well-balanced in terms of expertise, the 
worst student will employ mainly the two best choices. We 
also need to mention that this is the only point in the algo-
rithm at which we introduce a scale. This fact will become 
important in the following sections. 

 
Forty iterations of the sort described above make up a 

training epoch. 
 
During each epoch we compute the denotational matrix 

(Hermanns & Rettelbach, 1994). This matrix records all the 
communication events associating a given answer with an 
expected answer: each time one group member gives an 
answer for the posted question, the element of the denota-
tional matrix corresponding to the given answer and the 
answer that the student who posted the question was expect-
ing is incremented. Therefore, the denotational matrix is a 
correlation matrix between expected and provided answers. 

 

 
 

Figure 3. The elements of denotational matrix for a 4 student 
group vs. epoch number 

 
 
Initially, this matrix is uniform because we initialized 

all the FSM behavioral matrices randomly: in the beginning 
there is basically no correlation between expected and at-
tempted answers because the group members employ arbi-
trary semantic rules. As the students begin to understand 
one another, the denotational matrix becomes singular. As 
we see in Figure 3, three elements of the denotational matrix 
separate from the rest, and, after some number of epochs, 
they reach a plateau where the group of students has a se-
mantic agreement. In order to evaluate the singularity of the 
denotational matrix, once the matrix reaches its plateau, we 
start by identifying the peak elements in the matrix, and then 
reorganizing the columns and the lines of the matrix such 
that the peak elements line up on the diagonal. The average 
distance between the peak diagonal elements and the off-
diagonal elements will characterize the singularity of the 
matrix: 
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where mij is the denotational matrix, σ is its singularity, and 
n the dimension of the matrix or the cardinality of the vo-
cabulary set. 
 

One observes a peak in this average distance for the 
four-student group in Figure 4, result which agrees with 
experimental results: starting from data describing academic 
achievement and active engagement in small study group, J. 
D. Hagman and J. F. Hayes recommend group sizes of four-
five students (Hagman & Hayes, 1984; see also Johnson & 
Johnson, 1989). In general, the psychology and education 
literature agrees that groups of four or five members work 
best. Larger groups decrease each member’s opportunity to 
participate actively and have a negative impact on the aca-
demic performance, especially in the case of lower skill 
students. Other factors also contribute to the optimum size 
of the study groups. The amount of time available for in-
struction seems to relate proportionally with the group size: 
less available time recommends smaller group sizes such 
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that each group member receives a larger amount of indi-
vidual instruction time. The skill distribution of the students 
making up the group goes also proportionally with the 
group size: less skillful students need more instruction time, 
speculate the authors (see, for example, Cooper, 1990; John-
son et al., 1991; and Smith, 1986). 

 
Two large-scale studies investigating the impact of in-

structional group size and academic achievement drew es-
sentially the same conclusion: Larger group sizes correlated 
inversely with academic achievement for special education 
students. Gottlieb and Alter (1997) based this conclusion on 
their evaluation of mandated increases from five to eight 
students in New York City resource and speech language 
classrooms. Results from statewide reading achievement 
tests revealed that only 16% of sixth graders met state read-
ing criteria after group size increases, compared with 29% 
before increases (1994-95). 
 

 
 

Figure 4. The singularity of denotational matrix vs. number of 
students 

 
Summing up the phenomenological results, there are 

two main factors that seem to influence the relation between 
group size and academic performance. First, the instruction 
time share for each individual member of the group: more 
students in a group decrease the amount of individual in-
struction time per group member. Following this line of 
argumentation one has to favor smaller groups over bigger 
groups, and even expect that single student groups should be 
the optimum instructional formula. However, the experi-
mental findings show that larger groups (4-5 student groups) 
have a more beneficial impact on group and individual per-
formance. 

 
Second, the ability of the group to emulate and support 

active engagement of its members has a better chance to 
explain the phenomenological results. On one hand, a single 
member group does not engage the student much because 
there is no peer to support and entice the student. On the 
other hand, being part of a large group encourages isolation-
ism because the group members wouldn’t have many oppor-
tunities to contribute actively to the group discussions. Our 
simulation, starting from different assumptions and monitor-
ing a factor different from the two phenomenological factors 

discussed above, corroborates the experimental results and 
proposes a different way to look at them. 

 
The peak in Figure 4 has been obtained starting from 

the assumption that one may judge the group performance 
based on the quality of the semantic agreement the group 
reaches. There are two essential ingredients responsible for 
this result. In the first place, one has to count the ability of 
the group members to learn and adjust their behavioral rules 
based on the group interaction. Although necessary, this 
feature of the simulation is not sufficient: the denotational 
matrix does not become singular if one turns off the recon-
struction step (the singularity of the denotational matrix 
remains to lower values). Therefore, one has to extend the 
simulation to include the other essential ingredient: the re-
construction step. 

 
It turns out that the reconstruction step in the simulation 

is essential for two reasons. First, the denotational matrix 
does not become singular without this step even after very 
long simulation times. Apparently, the simple learning and 
local adjustment of the behavioral matrix is not enough for 
reaching a semantic agreement. From this point of view, the 
“worst” students in the group initiate the semantic compro-
mise necessary for a subsequent agreement.  
 

 
 

Figure 5. The singularity of denotational matrix vs. number of 
students for different reconstruction algorithms 

 
Second, the reconstruction step introduces a scale in the 

simulation that relates to the position of the peak in Figure 
4. In order to see this, we generalized the reconstruction 
algorithm to involve more than two students and plotted the 
singularity of the denotational matrix versus the group size 
for scenarios when 2, 3, 4 and 5 group members contribute 
to the reconstruction of the “worst” student. Figure 5 shows 
that the peak in figure 4 does shift with the scale change. 
We see this finding as an experimental challenge: one may 
go and set up an experiment analyzing relatively homoge-
neous study groups of varying sizes for the optimal number 
of group members that seem to influence the group outlook 
in a larger extent. 
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IV. SEMANTIC AGREEMENT AND CROSS 
GROUP COMMUNICATION 
 
The next question we asked was, What will happen if we 
extend the above simulation to more groups? How will 
communication across groups influence the previous re-
sults? Therefore, we have settled for two groups of four but 
we extended the options a “student” has by giving the stu-
dent an opportunity to ask, or listen, to a “teacher” in an 
adjacent group. Specifically, this time our “classroom” con-
tains two four student groups and each group member may, 
when its turn comes, post a question, answer a posted ques-
tion, or learn (with a certain standard probability) the an-
swer to the posted question from the best student in the ad-
jacent group. This latter learning was implemented mechan-
ically, the student simply updating the internal state in the 
FSM matrix with the corresponding state of the “teacher”’s. 
 

 
 

Figure 6. The singularity of denotational matrix versus cross-
group communication probability 

 
For relatively large probability the singularity becomes 

smaller, which was expected given that asking st dents from 
the adjacent group is equivalent with extending the numbers 
of group members, but as we have seen already the singular-
ity in that case peaks at around four group members. What 
is interesting, though, is the fact that for relatively small 
probabilities the singularity for this simulation is superior to 
a close group singularity for the same group size. Therefore, 
the simulation seems to suggest that cross-group communi-
cation is beneficial to reaching a semantic agreement as long 
as the amount of extra group communication is kept to low-
er values. This result corroborates experimental results 
(Hagman & Hayes, 1984; Johnson & Johnson, 1989). Also, 
Robert J. Beichner (Beichner, 2000; Handelsman et al., 
2004) has implemented a modified version of PBI tutorials 
developed by the PER group at the University of Washing-
ton: instead of organizing students in separate work groups, 
he placed three groups of three students each around a 6-
foot round table in order to encourage cross-group interac-
tion. However, every three student group was evaluated as 
an independent unit and students were encouraged to col-
laborate mainly within their group; interaction with the stu-

dents in the adjacent groups was accepted only when the 
entire group reached an impasse, and before the group 
would request the assistance of an instructor. He reports 
significantly improved performance in problem solving and 
increased conceptual understanding: 43% and 50% average 
normalized gain on FCI as compared with only 23% nor-
malized gain for traditional classes. 
 
 
V. CONCLUSIONS 
 

The internal dynamics of the study group is determined 
by the quality of the communication. Moreover, in a certain 
extent, one may see a learning process taking place within a 
group as similar to a process of reaching a semantic consen-
sus in that group. This paper proposes a scenario for a group 
semantic play that seems to conduce to the emergence of the 
semantic agreement within the group. As a side result of the 
simulation, making the assumption that two of the players of 
the semantical game influence the rest of the group, the 
simulations suggest that a group size of for is the optimum 
size for reaching the highest semantic agreement. This ar-
gument, seen in reverse, suggests an experimental test for 
the above theoretical assumption. 
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