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Item Response Theory (IRT) is a popular assessment method widely used in educational measurements. 
There are several software packages commonly used to do IRT analysis. In the field of physics education, 
using IRT to analyze concept tests is gaining popularity. It is then useful to understand whether, or the ex-
tent to which, software packages may perform differently on physics concept tests. In this study, we com-
pare the results of the 3-parameter IRT model in R and MULTILOG using data from college students on a 
physics concept test, the Force Concept Inventory. The results suggest that, while both methods generally 
produce consistent outcomes on the estimated item parameters, some systematic variations can be observed. 
For example, both methods produce a nearly identical estimation of item difficulty, whereas the discrimina-
tion estimated with R is systematically higher than that estimated with MULTILOG. The guessing parame-
ters, which depend on whether “pre-processing” is implemented in MULTILOG, also vary observably. The 
variability of the estimations raises concerns about the validity of IRT methods for evaluating students’ 
scaled abilities. Therefore, further analysis has been conducted to determine the range of differences be-
tween the two models regarding student abilities estimated with each. A comparison of the goodness of fit 
using various estimations is also discussed. It appears that R produces better fits at low proficiency levels, 
but falls behind at the high end of the ability spectrum.    

 

I. INTRODUCTION 

Item Response Theory (IRT) is a family of models, 
based on a statistical framework, which provide stable esti-
mates of item and examinee parameters (Junker, 1999; Yen, 
2006). Recently, IRT has gained attention in physics and 
astronomy education (Lee et al, 2006; Wang and Bao, 2010; 
Wallace and Bailey, 2010). IRT is capable of providing 
scaled latent score estimates for individual examinees, 
which enhances the information obtained through testing 
and helps researchers and educators evaluate teaching and 
learning effectiveness. 

One widely used IRT model is the three-parameter lo-
gistic model (3PL model), in which the possible measure-
ment outcome of an item is described with a probability 
function of the item characteristics and students’ proficiency: 

(1). 

Here, P(θ) is the probability for a student with ability θ 
to correctly answer  a question. The assessment characteris-
tics of a question are described in terms of three parameters, 
the item discrimination a, the item difficulty b, and the 
guess parameter c. The parameters are usually obtained with 
a large scale data set through a regression estimation process 
using Marginal Maximum Likelihood (MML) algorithms 
(Matthew S. Johnson, 2007, Dimitris Rizopoulos, 2006).  

Since the estimation processes are quite complicated, 
the computation is usually done with existing commercial 
and open-source software packages for IRT analysis. The 
most popular ones include R (with its LTM package), 
MULTI-LOG, PARSCALE, BILOG, ASCAL, LOGIST. 
Usually, the specific algorithms used by a software package 

are not publicly available. Due to different computational 
approaches the nature of the complex numerical manipula-
tions involved, different software packages rarely yield 
identical outcomes. It is important to understand in what 
ways these results may differ and how such differences may 
impact our interpretations of the assessment results. 

Many studies have compared software packages differ-
ent situations, with mixed outcomes. Demars (2001) studied 
PARSCALE and MULTILOG and showed that the two 
packages have consistent performance in estimating item 
parameters in a number of simulated situations. Jurich’s 
research (2009) suggested that the performance of a free-
ware, Hanson’s IRT Command Language (ICL), is equally 
as effective as PARSCALE on parameter estimation under 
all conditions. Comparisons of ASCAL and LOGIST in 
item parameter estimating (Gary Skaggs, 1989), however, 
suggested that the difference between the two packages de-
pends on conditions such as sample size and the number of 
questions in a test. 

In this paper, we compare MULTILOG and R. MUL-
TILOG is commercial software for IRT analysis. There are 
two options for using MULTILOG, one is a straight run of 
IRT regression and the other involves pre-processing to im-
pose Gaussian prior distribution for item parameters before 
the IRT regression starts (Mathilda Du Toit, 2003). There-
fore, it is important to understand how the pre-processing 
may influence the results.  

R is an open-source free programming language for sta-
tistics. It contains a free package, LTM, which can be used 
to do IRT analysis through Latent Trait Model (Dimitris 
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Rizopoulos, 2009). There is no option to do pre-processing 
in R. Thus, in this study, we compare the performance of 
three specific algorithms, R, MULTILOG without pre-
processing (MP), and MULTILOG with pre-processing 
(MNP), on a popular physics concept test.  

In physics education, standardized conceptual tests 
have been widely used in research and education practices. 
The Force Concept Inventory (FCI) is the most commonly 
used instrument and has led to many groundbreaking studies 
(Hestenes, et al. 1992; Hake, 1998). The FCI contains 30 
questions in multiple choice format (5 choices each question) 
covering approximately a dozen of core concepts in intro-
ductory mechanics. Research has shown that the FCI is ap-
propriate for IRT analysis (Wang and Bao, 2010), which can 
provide better insight for interpreting the assessment results 
than classical test theory.    

Because the IRT method is gaining popularity in phys-
ics education, it is important to know how different algo-
rithms may affect the analysis outcomes. In responding to 
this research question, this study builds on the existing work 
to compare R and MULTILOG on their performances in 
analyzing FCI data. 

II. METHOD 

At the Ohio State University, from September 2003 to 
June 2007, the students who enrolled in calculus-based in-
troductory mechanics courses took a pre-FCI test in the se-
cond week and a post-FCI test in the week before final ex-
ams. This data collection effort was a part of regular lab 
activities until September 2007, when a reformed lab curric-
ulum was implemented. The average pre- and post-FCI 
scores for each quarter (about 200 to 300 students per quar-
ter) remained fairly steady over time. In this study, the anal-
ysis is done with the pre-test data only, which contains 3139 
data points. We combined all the pre-test data over the years 
to conduct the analysis. Students’ responses to each item are 
coded into a 1-0 binary form for correct and incorrect an-
swers. The average score of this population is 49.27% with 
a standard deviation of 18.13%. To check the normality of 
the score distribution, a “Quantile-Quantile” plot was shown 
in Figure 1. The results suggest that student scores follow 
reasonably a normal distribution. The condition of this data 
set is appropriate for conducting IRT analysis.        

To apply the 3PL IRT model, there are two fundamen-
tal assumptions about features of the test questions, namely, 
the unidimensionality and local item independence. The 
unidimensionality describes whether a test is intended to 
measure the proficiency level of a common ability. Local 
item independence assumes that for each examinee, his/her 
performance on one item is independent of his/her perfor-
mance on another item. It has been shown that if the unidi-
mensionality assumption is satisfied, the local item inde-
pendence assumption is automatically verified. (Hambleton 
& Swaminathan, 1985. Lord & Novick, 1968). 

The dimensionality of the FCI test result is examined 
using eigenvalue analysis of the correlation matrix calculat-

ed based on the tetrachoric correlations among 30 test items 
(Reckase, 1979). The case of a unidimensional correlation 
matrix should have one eigenvalue much larger than the rest. 
(Reckase, 1979). The eigenvalues of the FCI pre-text corre-
lation matrix are plotted in Figure 2. The first ei-genvalue is 
significantly larger than the rest, which suggests a single 
proficiency accounting for a significant portion of the vari-
ances and the assumption of unidimensionality is reasonable.   

After confirming the validity of applying the IRT model 
to the analysis of the FCI results, we implemented the three 
IRT methods on the same FCI data. In each situation, both 
student ability and the item parameters were estimated. The 
results are compared to determine the differences among the 
three methods and the possible causes of such differences. 

III. RESULTS AND ANALYSIS 

A. Comparisons of the Item Parameters 

As discussed earlier, in the 3PL model, three parame-
ters describe the characteristics of each test items. They are 
item difficulty (b), item discrimination (a), and guessing (c). 
It is then important to know whether and how the item pa-
rameters produced by different software packages would 
vary. 

Using the pre-test data (N=3139), item parameters for 
each of the FCI questions are obtained using three methods: 
R, MULTILOG with pre-processing (MP), and MULTILOG 
without pre-processing (MNP). The results are summarized 
in Table 1 and plotted in Figure 3 for easy comparisons. 

 

 

 

 

 

 

Figure 1. Quantile-Quantile Plot of student pre-test scores on 
the FCI test. 

 

 

 

 

 
 

Figure 2: Eigenvalue analysis of the tetrachoric correlation 
matrix of FCI data. 
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In general, the item parameters obtained by the three 
methods are quite similar. In particular, the item difficulty is 
nearly identical for all three methods (p=0.922). This result 
agrees with an intuitive response, since the item difficulty 
determines the center of the fit, which should closely match 
the mean value of the performance measure (the average 
score) that remains constant regardless of the regression 
methods used. A consistent result for item difficulty also 
indicates that the characteristic curves of an item obtained 
with different methods are centered together. 

For the item discrimination, the results from MP and 
MNP are similar, indicating that pre-processing does not af-
fect the estimation processes. However, there are significant 
differences between R and either MP or MNP (p=0.004); the 
discriminations obtained from R are systematically higher 
than those of MP and MNP for all 30 items. This result sug-
gests that the slope at the center of the item characteristic 
curve obtained from R will be steeper than that of the 
MULTILOG curves.  

For the guessing parameter, results from R and MNP are 
nearly identical, while on some items MP would produce 
quite different outcomes. The differences occurred on 8 
items, for which R and MNP would produce near zero guess-
ing parameters. In contrast, MULTILOG with pre-
processing (MP) consistently produces larger guessing pa-
rameters. This result seems to be an outcome of pre-
processing, which imposes Gaussian prior distribution for 
all item parameters, including the guessing chances. Since 
each FCI question has 5 choices, the center of the Gaussian 
distribution of the guessing parameter is usually set to be 
0.2 (Mathilda Du Toit, 2003). It appears that the pre-
processing may have artificially moved up the guessing pa-
rameter by favoring a non-zero value.  

From research in physics education, it has been widely 
recognized that students entering introductory college me-
chanics courses usually have well-established, naïve con-
ceptions about physics. As a result, when students answer 
incorrectly, they consistently choose the answers that reflect 
their naïve concepts, rather than guessing (Bao & Redish, 
2006; Bao, Hogg, & Zollman, 2002). Therefore, for many 
FCI ques-tions, close to zero guessing parameters should be 
allowed. For this reason, we consider pre-processing an un-
suitable procedure to use when analyzing concept test items, 
about which students may have well-developed prior con-
ceptions. 

B. The Fit of Item Characteristic Curves 

Due to the variations in the item parameters obtained 
with the three IRT methods, the item characteristic curves 
will also be different, which in turn will impact the quality 
of the fit between a model and the data. For a visual com-
parison of the quality of the fit, the item characteristic 
curves from the different models for three selected items are 
plotted in Figure 4.     

The three items (questions 1, 5, and 23) are chosen for 

their different representative features. Question 1 is an easy 
question with low item discrimination and relatively high 
guessing chance. Question 5 is a hard question with high 
discrimination. Question 23 is an average question with a 
medium level of difficulty and discrimination. The guessing 
parameters for both question 5 and 23 are quite small. 
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(c) 

Figure 3. Comparisons of item parameters estimated 
with the three methods. The item discriminations, item dif-
ficulties, and guessing chances for different items are plot-
ted in (a), (b) and (c) respectively. In all graphs, the x-axis is 
the item number. The gray line represents the data obtained 
through R. The black line gives the data using MULTILOG 
with pre-processing (MP), and the gray dash line shows the 
results from MULTILOG without pre-processing (MNP). 
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Table 1. Item parameters estimates. 30-Items FCI Test 

Ques-
tions 

Discrimination (a) Difficulty (b) Guessing (c) 

R MP MNP R MP MNP R MP MNP 

Q1 1.02 0.63 0.61 -2.00 -1.71 -2.00 0% 15% 0% 

Q2 1.36 0.84 0.86 0.90 0.90 0.83 21% 21% 21% 

Q3 0.81 0.50 0.49 -1.24 -1.01 -1.26 0% 9% 0% 

Q4 1.21 0.79 0.78 1.48 1.44 1.36 12% 14% 13% 

Q5 3.38 2.45 2.37 1.46 1.40 1.32 7% 8% 8% 

Q6 1.30 0.72 0.80 -0.84 -1.05 -0.82 47% 40% 48% 

Q7 0.89 0.54 0.55 -0.91 -0.86 -0.89 16% 18% 18% 

Q8 1.46 0.89 0.90 0.09 0.10 0.05 27% 28% 28% 

Q9 1.49 0.90 0.91 1.20 1.17 1.10 30% 30% 30% 

Q10 1.47 0.92 0.9 -0.70 -0.59 -0.70 5% 10% 6% 

Q11 2.62 1.72 1.72 1.18 1.15 1.07 9% 10% 10% 

Q12 1.19 0.70 0.74 -0.98 -1.02 -0.94 24% 22% 27% 

Q13 3.91 2.55 2.57 0.84 0.84 0.76 12% 12% 12% 

Q14 1.03 0.65 0.63 -0.53 -0.36 -0.56 0% 7% 0% 

Q15 0.74 0.50 0.48 1.90 1.87 1.77 9% 11% 10% 

Q16 1.25 0.74 0.78 -0.02 -0.03 -0.04 34% 35% 35% 

Q17 2.26 1.42 1.41 1.89 1.82 1.74 5% 6% 5% 

Q18 3.92 2.88 2.79 1.24 1.21 1.13 8% 8% 8% 

Q19 0.78 0.51 0.47 -1.05 -0.66 -1.07 0% 14% 0% 

Q20 0.96 0.63 0.58 -0.79 -0.51 -0.81 0% 12% 0% 

Q21 1.03 0.62 0.62 0.76 0.75 0.68 19% 19% 19% 

Q22 1.42 0.84 0.87 0.52 0.51 0.45 24% 24% 24% 

Q23 1.23 0.79 0.75 -0.09 0.03 -0.14 0% 5% 0% 

Q24 1.73 1.03 1.06 -0.68 -0.68 -0.69 25% 24% 25% 

Q25 3.02 1.89 1.88 1.55 1.50 1.43 10% 10% 10% 

Q26 2.40 1.51 1.48 1.68 1.63 1.55 2% 2% 2% 

Q27 0.84 0.50 0.51 -0.71 -0.73 -0.74 19% 19% 20% 

Q28 1.40 0.89 0.89 0.72 0.74 0.66 8% 10% 9% 

Q29 0.39 0.26 0.24 -0.35 0.23 -0.39 0% 11% 0% 

Q30 2.53 1.61 1.63 1.18 1.15 1.07 9% 9% 9% 
Note: MP stands for MULTILOG with pre-processing. MNP stands for MULTILOG without pre-processing 
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Figure 4 contains a 3x3 matrix of item characteristic 
curves (ICC) overlaid with actual student data. Each row 
shows three ICC’s on a single question obtained from R, MP, 
and MNP (from left to right). The student data is calculated 
by first sorting students from largest to smallest, based on 
their estimated θ as estimated with the corresponding meth-
od. The students are then sequentially put in 31 groups; the 
first 30 groups contain 100 students each, and the last group 
contains 139 students. For each group, the mean of the esti-
mated θ and the actual scores are calculated and plotted.   

In general, by observing the plotted data points and fit-
ting curves, we can see that all three methods fit the data 
well, but with slight differences. It seems that MULTILOG 
gives more weight to the center part of the data and fits the 
central portion better than R does. On the other hand, R 
stretches more to fit the two ends, which, as a result, in-
creases the discrimination.  Between the two MULTILOG 
methods (MP and MNP), the differences in their fits are very 
small.  

C. Reliability of Student Ability Estimations 

A common goal of using IRT is to produce an ability 
scale for all students so that they can be evaluated and com-
pared across different tests and population backgrounds. 
Therefore, it is of great importance that the different soft-
ware packages produce consistent outcomes of ability esti-
mates for individual students.   

In this study, student ability is estimated together with 
the item parameters. With each of the three methods, there 
are 3,139 student ability variables (θ’s) and 90 item parame-
ters (a, b, c for each of the 30 questions) to be estimated. 
Since there are differences among the item parameters ob-
tained from different methods, it can be expected that the 
estimated student abilities will also vary.  

For each of the 3,139 students, three estimated abilities 
are obtained using the three methods. We then compare the 
differences among the mean values of the estimated abilities. 
The results are summarized in Table 2.  

We can see that the average θ obtained through R is 
nearly zero, which indicates that the algorithm used in R 
anchors the student ability at the center of student perfor-
mance. On the other hand, MULTILOG methods produce 
slightly higher estimates of student ability than R does 
(about 7% of SD for MP and 26% of SD for MNP). This re-
sult is consistent with the item parameter estimations. For a 
given target probability (score) on an item, student estimat-
ed ability is connected with item parameters through Eq. (2), 
which is rearranged from Eq. (1). 

(2). 

In the previous section, we see that R produces a larger 
a, similar b, and smaller c compared with MP, which leads to 
an overall outcome of larger ability estimated by MP. 
Meanwhile, MNP produces a smaller a, similar b, and similar 
c compared with R, which makes the estimated ability by 
MNP the largest among the three methods.   

To understand the impact of differences between esti-

mated abilities, it is also important to know how such dif-
ferences may vary across different ability levels. For this 
analysis, we compare Δθ between MNP and R and MNP and 
MP. Here, MNP is chosen as the common base for compari-
son, as it has only one algorithmic change from either R or 
MP. Figure 5 shows the Δθ’s plotted against the θ estimated 
by MNP. Again, each data point gives the mean of a group of 
100 students.   

From Figure 5, it is clear that θ obtained through MNP is 
systematically higher than with MP and R, when θ is smaller 
than 1.3 (approximately), a value that contains about 94% of 
the students. The result is inversed when θ is higher than 1.3. 

Based on the calculation, we also found a linear rela-
tionship that can cross relate the θ obtained with different 
methods: 

 

  (3). 

 

The differences in estimated ability will cause variations in 
the predicted probabilities of giving correct answers, which 
we will refer to as predicted scores. Therefore, it is valuable 
to develop a sense of how differences in estimated ability 
are reflected in the scale of student scores, which provides 
useful insights for analyzing both measurement uncertain-
ties and the confidence level of assessment outcomes. For 
this analysis, we compare the differences between predicted 
scores obtained with the three IRT methods (see Eq. (4)). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The item characteristic curves (ICC) for three FCI ques-
tions obtained through R, MULTILOG with pre-processing (MP) 
and MULTILOG without pre-processing (MNP). The y-axis is the 
probability of giving a correct response. The x-axis is the profi-
ciency θ estimated through the different methods. Each column 
shows the fits of the three questions with a particular model shown 
in dark black lines. The gray lines are fits of the other two methods. 
The data points in each graph show 31 groups of the observed 
probabilities (student scores) vs. estimated θ that each computed 
with 100 students’ mean value of the estimated θ and the observed 
score (the last group contains 139 students). The groups are formed 
with students ordered according to their estimated θ. The error bars 
of the data points are standard errors for the mean. 
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Table 2. Student ability estimates using different methods. The means and standard deviations are calculated based on the estimated θ of 
3139 students. The standard deviation of the difference is calculated based on 3139 paired differences. 

IRT Methods Mean θ (SD) Differences Mean Differences (SD) 

R 0.004 (0.922) MNP – R 0.153 (0.119) 

MP 0.065 (0.888) MP – R 0.062 (0.075) 

MNP 0.157 (0.853) MNP – MP 0.092 (0.076) 

 

 

(4). 

 

 

Using Eq. (4), the differences in the predicted scores of 
30 FCI questions (total percentage score) are calculated with 
different IRT methods.  The mean values of the results are 
summarized in Table 3. Figure 6 shows how the differences 
in the predicted scores may vary with estimated ability and 
different questions. The results show that the variations in 
abilities estimated with different methods will cause uncer-
tainties equivalent to about 2 to 3% of the students’ scores. 

From Figure 6a, we can see that the differences in pre-
dicted scores are small at the extremes (low and high θ) and 
peak when θ equals approximately 0.6. From Figure 6b, we 
can see that differences in the predicted scores do not vary 
significantly across different items. In general, the differ-
ences are in the range of 1 to 2% for most items, showing a 
somewhat uniform distribution of differences in predicted 
scores among the FCI items. 

D. Goodness of Fit 

In addition to the differences in parameter estimations 
by the three IRT methods, it is also important to determine 
how well the individual methods fit the data of the physics 
concept test. Here, we use the mean error (ME) and root 
mean square deviation (RMSD) to evaluate the goodness of 
fit.  

To calculate the ME and RMSD, we first arrange the 
students’ data according to their estimated ability, in de-
scending order. Then, the students are divided into 62 profi-
ciency groups, each containing 50 examinees (with the last 
group containing 89 students). For each item, we can calcu-
late the average observed score and three predicted scores. 
For each IRT method, the ME and RMSD can be calculated 
using Eq. (5): 

 

 

(5). 

 

Here Ski and Pki are the average observed and predicted 
score of the kth group on ith item, respectively. 

 
Figure 5. Differences (Δθ’s ) between different methods. 

There are 31 groups, each containing 100 data points with the last 
group containing 139 students. The data points are means of Δθ 
plotted against means of θ estimated with MNP. The error bars are 
the standard errors of the mean. 

Table 3. The mean differences of the predicted probabilities 
of answering the FCI test correctly under different IRT methods. 

IRT model Δθ ΔP 

MNP – R 

Δθ1–SD1 0.034 0.43% 

Δθ1 0.153 1.96% 

Δθ1+SD1 0.272 3.47% 

MNP – MP 

Δθ2–SD2 0.016 0.20% 

Δθ2 0.092 1.18% 

Δθ2+SD2 0.168 2.15% 
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(b) 

Figure 6. Differences of the predicted scores using different 
methods (a) at different θ levels; (b) across different test items. The 
error bars are standard errors of the means. 

The ME and RMSD for the different IRT methods are summa-
rized in Table 4. We can see that the mean error of R is closer to 
zero than that of the other two methods, which is consistent with 
the fact that R’s average estimated ability is nearly zero. On the 
other hand, the two MULTILOG methods both have positive MEs, 
suggesting that the predicted scores are consistently larger the 
observed scores.  With the RMSD measure, R produces a larger 
value than the MULTILOG methods, indicating a wider span of 
estimated student ability. 

For students at different ability levels, the goodness of 
fit also varies, which is shown in Figure 7a. The results 
show that towards the lower end of θ, the ME of R is very 
close to zero, smaller than the ME’s of the two MULTILOG 
methods. For θ larger than zero, R and MP have similar neg-
ative ME’s, while the ME of MNP is mostly above zero.   

Since the ME counts both positive and negative values, 
it gives a better measure of the center of the fit, but cannot 
reflect the range of the uncertainties. With the RMSD meas-
ure, one can see more of the range of the variances between 
the observed data and the fit. Based on the results in Figure 
7a, we can see that the two MULTILOG methods fit well 
for θ larger than -1.5, while the R method fits well at the 
lower end of θ but produces a larger RMSD than the MUL-
TILOG methods for θ larger than zero.  

Overall, the results show that R produces the fit that 
best matches the center of the data, while Mp seems to pro-
duce the best fit in terms of a smaller range of variances. 

Figure 7b shows the results of ME and RMSD of fit for 

individual items. The results show that the MULTILOG 
methods produce more stable mean errors across different 
items. It appears that MULTILOG with pre-processing pro-
duces the best fit based on both the ME and RMSD measures. 

Table 4. Average mean errors and root mean square devia-
tions. 

IRT model Mean error  RMSD 

R -0.001 0.084 

MP 0.008 0.069 

MNP 0.033 0.073 
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Figure 7. The mean errors and root mean square deviations (a) 
at different θ levels; (b) across different items. 

0

1

2

3

4

5

‐2 ‐1 0 1 2

∆P
(%

)

θ

M2‐R

M2‐M1

0

1

2

3

0 5 10 15 20 25 30

∆P
(%

)

Item

M2‐R

M2‐M1



8                     R.E.A.L. 2 (02), December 2011                                           https://realjournal.org                                                                     © iSTARClass Ltd.  

In summary, R produces a better fit that matches the 
center of the data with the estimated ability and predicted 
scores; however, it creates larger range of variances than the 
two MULTILOG methods. The pre-processing in one of the 
MULTILOG methods seems to improve the goodness of fit 
regarding the consistency of the uncertainties across differ-
ent items, but at the expense of slightly higher predicted 
scores (at 1% level).   

III. SUMMARY AND CONCLUSIONS 

In this paper, three 3PL IRT methods, R, MULTILOG 
with pre-processing and MULTILOG without pre-
processing, are compared in terms of their performances on 
item parameter and student ability estimations with data 
from a popular physics concept test.   

For parameter estimation, the three methods were 
shown to produce varying results. All methods produce very 
similar estimations of item difficulty. For item discrimina-
tion, R consistently produces higher estimates for all test 
items. The situation for the guessing parameter seems to be 
significantly affected by the pre-processing procedure, 
which imposes a Gaussian prior distribution for the guessing 
parameters, centered at 0.2 because of the five-choice mul-
tiple choice test. Without using pre-processing, near-zero 
guessing parameters are produced for 8 of the 30 items by 
both R and MULTILOG. With pre-processing, the guessing 
parameters on those 8 items increase. As shown by research 
in physics education, students coming into the course often 
have strong, naïve preconceptions, which can cause them 
choose responses based on incorrect conceptual thinking, 
resulting in scores close to zero, much lower than the theo-
retical chance level. Therefore, when implementing IRT 
analysis, we need to carefully inspect the assessment model 
against the cognitive models underlying the measurement 
instrument. This study shows an example suggesting that 
pre-processing might not be appropriate for use with certain 
conceptual test instruments, such as the FCI.  

On the estimation of student ability, the differences 
among the three methods are on the order of 0.1, which is 
about 2 to 3% of the raw score difference. For a 30-question 
test, such differences are equivalent to the uncertainty of 
missing one test question, which is tolerable in education 
assessment, where we typically see standard deviations of 
20% and effect sizes of about 0.5 (which is approximately 
equivalent to 50% of the standard deviation).  

In terms of the goodness of fit, all methods seem to fit 
well, with slight variations. R matches the center average 
better, but has a larger range of variation, as it also stretches 
to cover the extremes of the data. The MULTILOG methods 
produce a more stable fit for different items with more 
weight on the center part of the data. However, MULTILOG 
consistently produces slightly higher estimates of student 
abilities than R does.  

In summary, although there are variations, the com-
pared IRT tools produce satisfying outcomes when analyz-
ing a physics concept test. This study reveals interesting 
differences among the different methods, and these differ-

ences are important for researchers and teachers to consider 
when applying IRT methods in education assessment and 
interpreting the results of their analysis. In addition, exam-
ples in this study provide insight into the need for inspecting 
assessment models and adapting them to the cognitive mod-
els of the measurement instruments. 
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