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Abstract: A stable structure of tennis tower can be formed by stacking tennis balls to a certain structure. 

This paper will explore the structural stability of stacked tennis tower and the structural limit of the 

tennis tower and give the factors that limits the height growth of the tennis tower by experiments. It’s 

proved that the friction coefficient of tennis surface is not a constant but gradually decreases with the 

increase of the pressure applied. Based on this conclusion and experimental data, it is deduced that the 

practical stacking limit of tennis tower is about 11 layers. 
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1. Introduction 

Rogava from Ilia State University in Georgia reveals how simple friction allows bizarre towers to be built 

using tennis balls (Rogava.A, 2019). Firstly with 10 balls we can build a three-level pyramid with a 

triangular cross-section, which has 6 balls at the bottom, followed by 3 in the next layer and finally 1 ball 

on top. A tower can be made by carefully removing the three corner balls from the bottom layer of the 

pyramid. Interestingly, the corner balls in the second-bottom layer are kept in equilibrium, hanging over 

the layer below. These “exposed” balls are held in place because the balls directly above press down on 

them and into the two adjacent balls of the bottom layer – producing a pair of reaction forces to balance 

their weight. The torques are balanced too, with enough friction between the felt-covered balls to guarantee 

equilibrium. Moreover, this seven-ball structure can be made even higher by adding one extra three-ball 

layer after another, in which each tower has (3n + 1) balls, where n is the number of triangular layers. 

Experiments shows that as the tower goes taller, the difficulty to keep equilibrium grows. Therefore, we 

infer that there is a structural limit to the tennis tower.  

 

Figure 1. Left was a tower made by the author, and right is one from Rogava (Rogava.A, 2019) 
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In this paper, we first derive the equilibrium conditions of the simplest three-layers tennis tower, and 

analyze the factors that determine the equilibrium of the tennis tower. Secondly, for tennis towers with 

more layers, the variation trend of the equilibrium condition is deduced, so as to find the parameters 

limiting the height growth of the tennis tower. Finally, according to experiments, the friction coefficient of 

the tennis ball skin is proved to change with the pressure, and the actual height limit size of the tennis ball 

tower is deduced. 

2. Research Design, Data collection and analysis Methods 

2.1. Stability of a three-layer tennis ball tower 

Analysis: The conditions required for the static equilibrium of tennis balls are force balance and torque 

balance. For the three-dimensional structure in this example, choosing an appropriate method to optimize 

the calculation is the key to solving the problem. For this reason, we establish an orthogonal rectangular 

coordinate system as shown in Figure 2.  

 

Figure 2. Three -dimensional structure of the three-layer tower 
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Solution: Project the three-layer tower composed of 7 balls to the horizontal plane. It is easy find that 

the tower has a symmetrical structure, based on which we can draw the horizontal force of the third-layer 

balls on the second-layer ones. 

 

Figure 3. Planform of the tower and forces on each ball  

To analyze the force on the tennis balls at each layer, we also need to project the tower from different 

sides, and simplify the three-dimensional problem into a two-dimensional one through its symmetrical 

structure. 

2.1.1.  Force on the top ball 

In Figure 4, the top ball experiences gravitational force, with the normal force and the frictional force that 

the second layer act against it. According to the vertical force balance and the symmetrical structure of 

the top ball, we get: 

𝑁0 𝑐𝑜𝑠 𝜃 + 𝑓
0
𝑠𝑖𝑛 𝜃 =

1

3
𝑚𝑔 (1) 

 

Figure 4. Force body diagram of the top ball observing from the left side 
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2.1.2.  Force on the balls at the second layer 

In Figure 5, the forces that acting on the second layer’s ball are more complex. The second layer of the 

ball is squeezed in static state by the top and the third layer of the ball fixed. Based on the torque balance 

around the axis at the bottom of the balls at the second layer, we have: 

N0𝑑 cos(𝜃 + 𝜙) + 𝑚𝑔𝑑 sin 𝜙 = 𝑓
0
(𝑟 + 𝑑 sin 𝜃) (2) 

Combining the above two equations, we can get: 

f0 =
√3

6
𝑚𝑔 (3) 

N0 =
√6

12
𝑚𝑔 (4) 

μ
0Min

=
𝑓
0

𝑁0

= √2 (5) 

Now, we have solved that the minimum static friction coefficient required for a three-layer tennis ball 

tower is √2. 

 

Figure 5. Force body diagram of the second layer’s ball observing from the left side 

2.2. Stability of tennis ball tower with arbitrary layers 

Analysis: The next step is to find out the stability of the tower with arbitrary layers. When the layers 

can be set to a random number, the key to solving the problem is to find out the recursion formula of 

force between the layers, and thereby obtain the general solution. 

Solution: The recurrence relation only starts from the third layer. Therefore, as a starting point, let us 

analyze the force on the balls at the third layer. 
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2.2.1. Solving the recursion formula 

By the torque balance around point N, in Figure 6, we have: 

mgd sin 𝜙 + 2𝐹(𝑛−1)𝑦2𝑑 cos 𝜙 = 0 (6) 

So,  

F(n−1)y = −
√2

16
𝑚𝑔 (7) 

This proves that between the second layer and the second-to-bottom layer, Fy is a constant.  

Then, from the horizontal force balance, we get:  

2F(n−1)y + 2Fnx cos 𝛼 = 2𝐹𝑛𝑦 sin 𝛼 (8) 

So,  

Fnx =
√6

48
𝑚𝑔 (9) 

From the above deduction, it can be concluded that between the second layer and second-to-bottom 

layer, the Fx is also a constant. 

Based on the vertical force balance, we get: 

2F(n−1)z + 𝑚𝑔 = 2𝐹𝑛𝑧 (10) 

So,  

Fnz = 𝐹(𝑛−1)𝑧 +
1

2
𝑚𝑔 (11) 

From this, we can see that between the second layer and the bottom layer, Fz is an arithmetic sequence.  

 

Figure 6. Force body diagram of the third layer’s ball observing from the left side 
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2.2.2 The initial conditions for solving the sequence 

With the above conclusions, according to the vertical force balance on the balls at the second laye, we 

can have: 

mg + 𝑁0 𝑐𝑜𝑠 𝜃 + 𝑓
0
𝑠𝑖𝑛 𝜃 = 2𝐹1𝑧 (12) 

From the horizontal force balance, we get:  

N0 sin 𝜙 − 𝑓
0
cos 𝜙 = 2𝐹1𝑦 sin 𝛼 − 2F1x cos 𝛼 (13) 

Combining the two equations, we can get the first term of the recursion sequence:  

F1z =
2

3
𝑚𝑔 (14) 

F1x =
4√2 − √6

48
𝑚𝑔 (15) 

The F1y in the solution process is given by the torque balance equation of the balls at the third layer, 

which is a constant when the subscript is 1. 

2.2.3 Solving the last term of the sequence 

In Figure 7, the force on the balls at the bottom layer could be known. 

 

Figure 7. Force diagram of the bottom layer’s ball observing from the left side 

According to the torque balance around the touch down point, we get: 

2F(n−1)z𝑑 sin 𝜙 = 2𝐹(𝑛−1)𝑦(𝑟 + 𝑑 cos 𝜙) (16) 

From the vertical force balance, we have: 

2F(n−1)z + mg = Nn (17) 

Using the horizontal force balance, we get: 

2𝐹(𝑛−1)𝑦 = fn (18) 

Based on the general formula of the force in the z-direction, we can have: 

F(n−1)z = (
𝑛 − 1

2
+
1

6
)𝑚𝑔 (19) 
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The subscript n equals to the layer number minus 1. Therefore, the subscript of the bottom layer is 

defined as 0. 

In this case, we get: 

Nn = (𝑛 +
1

3
)𝑚𝑔 (20) 

F(n−1)y =
(3 − √6)

3
(
𝑛

2
−
1

3
)𝑚𝑔 (21) 

fn =
2(3 − √6)

3
(
𝑛

2
−
1

3
)𝑚𝑔 (22) 

Substituting the recursion formula of the force in the y-direction, we can have: 

F(n−2)y = −
√2

16
𝑚𝑔 (23) 

So, 

F(n−1)x =
√3

3
(
(3 − √6)

3
(
𝑛

2
−
1

3
) +

√2

8
)𝑚𝑔 (24) 

2.3 Layer limit of the tennis ball tower in practice 

We have worked out the force at any contact point at any layer in the tower, thus the minimum static 

friction coefficient required for all contact surfaces can be solved. The approximate change trend can be 

obtained by computer simulation as follows: 

 

Figure 8. Friction coefficients that required for the balls from 3 to 12 layers 

It can be seen from the above graph that the maximal static friction coefficient that the top ball requires 

is exactly 1.414, which is also the minimum static friction coefficient required by the three-layer tower. 

Using deduction, it can be concluded that the top ball requires the highest static friction coefficient for 

equilibrium, which decreases gently as the layer goes down. The minimum static friction coefficient 

required between the balls at the bottom layer and the table takes another step downward. 
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Analysis: We can find through some simple experiments that the static friction coefficient between the 

ball surfaces is not always constant, but gradually decreases as the pressure at the contact point increases. 

The more layers, the heavier it is for the lower-layer balls and the higher static friction coefficient between 

the balls at lower layers due to the increasing pressure. This means that the actual static friction 

coefficient might be lower than the required one for the lower-layer balls.  

To this end, we designed an experiment as follows. 

Experiment design: Since the shape of tennis ball is a sphere, the measurement of friction coefficient 

needs to offset the torque. Therefore, we choose to disassemble a brand-new tennis ball to obtain the felt 

of the tennis ball. We spread the felt out into a flat surface and pasted it on the bottom of a lightweight 

carton, and another piece of felt to paste on an inclined plane. 

 

Figure 9. Equipment used in the frictional force test 

We placed weights of different masses in the carton and place the carton on the inclined plane. The 

angle of the inclined plane was slowly raised until the carton just begins to slide. The weight of the 

weights in the carton, the angle of the inclined plane at the beginning of the slide and the weight of the 

carton itself were measured and recorded. The friction coefficient was obtained by the tangent of the 

angle of the inclined plane. The downward trend of static friction coefficient as shown in Figure 10. 
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Figure 10. Coefficient of friction varies with pressure 

Simulation: We use linear approximation to simulate the change of static friction coefficient and take a 

tennis ball weighing 57 grams as the subject. There are two lines in the graph below: the orange one 

represents the actual downward trend of the friction coefficient between the balls at each layer, while the 

blue one indicates the theoretical change trend of that required for the tower equilibrium. 

 

Figure 11. Minimum coefficient of friction changing with the number of the layer 

Conclusion It can be seen from the Figure 11 that when the layer number exceeds 10, the actual 

friction coefficient between the tennis balls will be lower than the theoretical one. Therefore, it can be 

concluded that the layer limit of the tennis ball tower is around 10-11. 

The current record for the highest tennis ball tower is made by Professor Andria Rogava from Ilia State 

University. The tower structure he built was first published in the magazine Physics World on May 23, 

2019. The highest tower that he has successfully built so far is exactly of 10 layers, which verifies our 

theoretical and experimental results to a certain extent. 
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3. Results 

3.1. Results of study 2.1 

In section 2.1, we established the geometric model and decompose the forces in the system, and carried 

out the equilibrium analysis of the simplest three-layer tennis tower structure through the statics 

equilibrium conditions. It was concluded that the friction coefficient between the top layer and the 

middle layer of the three-layer tower is required to be at least greater than 1 for the balance of the tennis 

tower. 

3.2. Results of study 2.2 

In section 2.2, we selected two adjacent layers of a multi-layer tennis tower as the system, and deduced 

the recursive relationship of the normal force and friction force between the tennis balls as the number of 

layers changes according to the equilibrium condition, the general term formula can be given as: 

Fnz = 𝐹(𝑛−1)𝑧 +
1

2
𝑚𝑔 (11) 

F(n−1)y =
(3−√6)

3
(
𝑛

2
−

1

3
)𝑚𝑔 (21) 

F(n−1)x =
√3

3
(
(3−√6)

3
(
𝑛

2
−

1

3
) +

√2

8
)𝑚𝑔 (24) 

fn =
2(3− √6)

3
(
𝑛

2
−

1

3
)𝑚𝑔 (22) 

3.3 Results of study 2.3 

Based on the conclusions derived in the previous two sections, an experiment was designed to measure 

the friction coefficient of tennis felt. The experimental results show that the friction coefficient of tennis 

felt decreases with the increase of the pressure applied on it. 

With fitting the changing trend of friction coefficient of tennis felt with experimental data, we get the 

conclusion that the height limit of the actual tennis tower is about 10-11. 

4. Conclusions and Synthesis 

This paper first analyzes the structure of the tennis tower, and takes the simplest three-layer tennis 

tower as an example, obtains the size of the friction coefficient needed to keep the balance between the 

highest layer of tennis balls. Secondly, for the tennis tower with more layers, the relationship and 

changing trend of the friction coefficient required at each contact point are calculated layer by layer. The 

experiment shows that the friction coefficient of tennis felt is not a constant, but decreases with the 

increase of pressure. Therefore, the higher the tennis tower is, the more difficult it is to meet the condition 

of the bottom tennis ball to keep balance. According to the experimental data, it can be estimated that the 

height limit of the tennis tower is about 10-11 stories. 

Because it is very difficult to build a tennis tower with higher height, we failed to verify the obtained 

limit of the tennis tower. However, the current record for the highest tennis ball tower is made by Rogava 

(Rogava.A, 2019). The highest tower that he has successfully built so far is exactly of 10 layers, which 

verifies our theoretical and experimental results to a certain extent. 

Our vision for future experimental directions is to translate the difficulty of increasing the height of the 

tennis ball into increasing the weight of the tennis ball. Because the experiment proves that the friction 

coefficient is related to the pressure, and for a certain layer at the bottom, the change of the number of 

tennis layers on it equals to the change of the total weight of tennis balls. Therefore, our next experiment 
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will fill the tennis balls with a certain amount of padding to verify our inference about the structural limit 

of the tennis tower. 

 

References: 

Duan ShuminYanpingKong. (2004). Self-locking Phenomenon in Friction. Mechanics in Engineering, 

(05)81-83(1). 

Rogava.A. (2019). Tennis-ball towers. Phisics World, 32(5):25-25. Retreived from: 

https://physicsworld.com/a/physicist-creates-remarkable-tennis-ball-pyramids-including-one-

made-from-46-balls/ 

Yang YimeiXiachunHuang. (2007). Friction and Determination of Self-locking. Mechanical Research & 

Application, (03)35-36(1). 

YongguangTang. (2010). Friction Angle and Self-locking. Mechanics in Engineering, 32(06)121-123(1). 

 


